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 4: Aspects of Ambisonic Systems

This thesis does not include any detailed discussion of ambisonic reproduction systems or of

the psychoacoustic theories on which ambisonic decoders are based. A significant feature of

ambisonic technology is that recording and reproduction are decoupled to the maximum

extent possible [65]; hence, soundfield microphones can be treated without reference to

reproduction systems. This decoupling is achieved by defining the way in which directional

information is encoded in ambisonic systems, using the B-format signal set. So long as a

soundfield microphone provides output signals conforming to the B-format specification,

there is no need to consider how those signals will be used by a reproduction system (and

conversely, such a system can be designed to operate from B-format signals without

consideration of the origin of those signals).

4.1: The B-Format Signal Set

The B-format signals are usually defined in terms of spherical harmonics [31] [40]; it follows

from the analysis presented in Chapter 3 that they can also be expressed in terms of

derivatives of sound pressure. The nth-order B-format signal set consists of the signals which

would be obtained from 2)1( +n  coincident microphones having polar patterns corresponding

to the 2)1( +n  linearly independent spherical harmonics of all orders up to and including n. A

signal set of any order can be extended to a higher order merely by augmenting it with

additional signals; it is not necessary to change any of the existing signals [5] [40]. An nth-

order soundfield microphone is distinguished by its ability to provide outputs which are the

nth-order B-format signals.

  As discussed in Chapter 3, a set of nine signals corresponding to the outputs of microphones

with polar patterns given by the spherical harmonics of order up to and including two, which

are the second-order B-format signals, may be combined to synthesise the output of an

arbitrary microphone of order two or lower in any orientation. This result may be

generalised: the nth-order B-format signals may be combined such as to produce the output

of an arbitrary microphone of order n or lower in any orientation. This provides one

justification for the claim that the second-order soundfield microphone captures all the
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information up to second order present in the original sound field.

  In the following section it is demonstrated that the second-order B-format signals contain

sufficient information to reconstruct a plane wave up to the second order terms in certain

series expansions; this provides a second way in which second-order B-format may be said to

contain complete information up to second order.

  The signal designations used in this thesis, shown in table 4.1, are those proposed by

Richard Furse and Dave Malham [36]. First-order B-format consists of the zeroth-order

signal W and the three first-order spherical harmonic component signals X, Y and Z. The five

second-order spherical harmonic component signals are added to form second-order B-

format.

Signal
Designation

Polar Pattern Derivative Expression
(Neglecting Equalisation)

W 21 p

X )cos()cos( φθ x
p

∂
∂

Y )cos()sin( φθ y
p

∂
∂

Z )sin(φ z
p

∂
∂

R ( )1)(sin3
2
1 2 −φ 








+

∂
∂ pk

z
p 2
2

2

3
2
1

S )2sin()cos( φθ zx
p

∂∂
∂ 2

2

T )2sin()sin( φθ zy
p

∂∂
∂ 2

2

U )(cos)2cos( 2 φθ 2

2

2

2

y
p

x
p

∂
∂

−
∂
∂

V )(cos)2sin( 2 φθ yx
p

∂∂
∂ 2

2

Table 4.1: Furse-Malham Second-Order B-Format Signal Set

  The 3 dB attenuation of W compared to the other signals was originally included in the

definition of first-order B-format to approximately equalise the energy levels in W and the

three first-order component signals, and is maintained in the second-order B-format
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definition for reasons of backward compatibility. Comparison of the remaining signals with

the spherical harmonics given in table 2.3 shows that the associated polar responses have

been normalised to have the same maximum value, eliminating the scaling factors which

appear in the definitions of the spherical harmonics themselves.

4.2: Analysis of Second-Order Reproduction

Although ambisonic recording can be understood without reference to the way in which the

B-format signals are used by a playback system, appreciation of the information carried by

these signals is enhanced by some knowledge of the reproduction process.

  The analysis presented in this section is entirely at the physical acoustic level; no

psychoacoustic considerations are included. It may reasonably be assumed that, if the original

sound field could be physically reconstructed, then all of the spatial information originally

present would be conveyed to the listener. However, such exact physical reconstruction can

not be accomplished by a system employing a practical number of channels and

loudspeakers. Ambisonic decoding is based on approximate reconstruction of the sound field

only at low frequencies, if at all; at higher frequencies, decoding schemes are intended to

conform to psychoacoustic requirements which are not in fact satisfied by attempts to

physically recreate the sound field [31] [32] [41] [65]. Various decoding algorithms have

been proposed [27] [47] [58] [65]. The purpose of this section is to demonstrate that certain

information is carried by the second-order B-format signals, not to consider how this

information can most effectively be used to create the desired spatial effect for the listener.

4.2.1: Spherical Harmonic Matching Conditions

In [5], [6] and [90], the ability of an ambisonic system to reproduce a plane wave is analysed

in terms of the so-called “spherical harmonic matching conditions”. The method of analysis

utilised in these references is applicable to pantophonic ambisonic systems of arbitrary order,

although the authors concentrate primarily on first-order and second-order systems. Here, a

parallel analysis is presented which is specifically concerned with second-order periphonic

systems; the approach can again be generalised to systems of higher order, but this is
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unsurprisingly more complicated than in the pantophonic case. (It should be noted that the

notation employed here does not match that used in the cited references).

  Consider a plane wave propagating from a direction ),( φθ  with wave incidence vector
















=

)sin(
)cos()sin(
)cos()cos(

~

φ
φθ
φθ

kk (4.1)

Let A and ψ be respectively the amplitude of the wave and its phase at the origin of the

coordinate frame. Consider a point located a distance r from the origin in a direction );','( φθ

let the position vector
















=

)'sin(
)'cos()'sin(
)'cos()'cos(

φ
φθ
φθ

rr (4.2)

(see figure 4.1).

Figure 4.1: Position Vector r
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  The sound pressure at this point due to the incident wave

[ ]

[ ]

[ ])'sin()sin()'cos()cos()'cos()(

)'sin()sin()'cos()cos())'sin()sin()'cos()(cos()(

)'sin()sin()'cos()'sin()cos()sin()'cos()'cos()cos()cos()(

))'sin()sin()'cos()'sin()cos()sin()'cos()'cos()cos()cos((

)~(

φφφφθθψω

φφφφθθθθψω

φφφθφθφθφθψω

φφφθφθφθφθψω

ψω

+−+

+++

+++

++++

⋅++

=

=

=

=

=

jkrtj

jkrtj

jkrtj

krkrkrtj

tj
i

eAe
eAe
eAe

Ae
Aep rk

(4.3)
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
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rk
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i.e., the scalar product of the unit vectors k~)/1( k  and .)/1( rr  It is therefore equal to the

cosine of the angle between these vectors; let this angle be ζ (see figure 6.2), then

)'sin()sin()'cos()cos()'cos()cos( φφφφθθζ +−= (4.5)

and

)cos()( ζψω jkrtj
i eAep += (4.6)

From equation (2.15), we have

( )∑
∞

=

+=
0

)cos( )()cos()12(
n

nn
njkr krjPnje ζζ (4.7)

and so we may write
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Figure 4.2: Angle Between Vectors r and k~
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  Consider now an array of N loudspeakers, equidistant from the origin. The driving signal for

the mth loudspeaker is designated .mL  The output of each loudspeaker is assumed to be a

plane wave such that, if

)( ψω += tj
mm eAL (4.9)

then the resulting pressure at the centre of the loudspeaker array (the origin) is

)( ψω += tj
mm eAp (4.10)

This implies that the frequency response function relating the electrical input and acoustic

output of each loudspeaker is
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cDjeL /)( ωω = (4.11)

where D is the distance of each loudspeaker from the origin, which in turn implies that the

loudspeakers are non-causal. This is purely a convention that simplifies the analysis by

enabling us to ignore the time delay resulting from the finite time required for sound to

propagate from a loudspeaker to the array centre. In reality, of course, this delay is present, as

in fact is the arbitrary time delay which may exist between the recording and playback of an

acoustic event. The actual comparison which is important is between the original sound field

and that generated by the reproduction system when each is expressed relative to its own

temporal origin. However, for the purposes of the present analysis it is convenient to describe

both sound fields in terms of the same spatial and temporal coordinates, and it is simpler to

assume non-causal loudspeakers than to include a linear phase lag factor which will in any

case only be neglected at a later stage.

  Let the mth speaker be positioned in a direction ),,( mm φθ  then the sound pressure at the

point r due to the plane wave output of the mth speaker can be written

( )∑
∞

=

+ +=
0

)( )()cos()12(
n

nmn
ntj

mm krjPnjeAp ζψω (4.12)

where

)'sin()sin()'cos()cos()'cos()cos( φφφφθθζ mmmm +−= (4.13)

and the total sound pressure due to the outputs of all loudspeakers in the array is
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By comparing equations (4.8) and (4.14), we see that ipp =  if, for all n,
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( ) ( )∑
=
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N
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n
nn
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1
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or, cancelling the common factors ),12( +nj n  )(krjn  and ,)( ψω +tje

( ) ( )∑
=

=
N

m
mnmn PAAP

1

)cos()cos( ζζ (4.16)

Now, for each n, ( ))cos(ζnP  and ( ))cos( mnP ζ  can be expressed as linear combinations of

standard nth-order spherical harmonics.

  For ,0=n  we have

( ) ( )∑
=

=
N

m
mm PAAP

1
00 )cos()cos( ζζ (4.17)

which simplifies, since ,1)(0 =µP  to

∑
=

=
N

m
mAA

1

(4.18)

  For 1=n , equation (4.16) becomes

( ) ( )∑
=

=
N

m
mm PAAP

1
11 )cos()cos( ζζ (4.19)

or, since ,)(1 µµ =P

∑
=

=
N

m
mmAA

1

)cos()cos( ζζ (4.20)

which may be expanded to give
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This is satisfied if
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i.e., if
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  Finally, for 2=n  we obtain
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which, by appropriate substitution for ),(2 µP  becomes
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which is satisfied if
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i.e.,
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  Equations (4.18), (4.23) and (4.27) are the spherical harmonic matching conditions up to

and including second order; if these are satisfied, then equations (4.8) and (4.14) will be

equal up to the terms of second order.

  If the loudspeakers are positioned at the vertices of a notional regular dodecahedron, it may

be verified by substitution and lengthy algebraic and trigonometric manipulation that these

matching conditions are satisfied if the loudspeaker feed signals are
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where the second-order B-format signals are measured at the origin. Hence, these signals

carry all the information required to construct a second-order approximation of a plane wave.

  This analysis may be reduced to the pantophonic case by putting 0=φ  and 0=mφ  for all
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m. Some of the previously obtained matching equations then reduce to ,00 =  since

.0)0sin( =  The remaining set is
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The fourth equation here is clearly redundant, since it expresses the same condition as the

first. The remaining five equations are the spherical harmonic matching conditions for

second-order pantophonic systems, as given in [5] and [6].

4.2.2: The Maclaurin Series Interpretation

Let the position vector r designate a point close to the origin, and let 2p  be the pressure at r

expressed as a Maclaurin series truncated to second order:
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(where p and all derivatives are, of course, measured at the origin). We may alternatively
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(4.31)

If the sound field is assumed to satisfy the Helmholtz equation, this can be rewritten as
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(4.32)

With reference to table 4.1, it may be seen that this equation is expressed entirely in

quantities which are represented by the second-order B-format signals; this demonstrates that

the second-order B-format signals contain the necessary information to construct an

approximation of the original soundfield.

  However, this approach also shows clearly that in fact the second-order B-format signal set

only carries complete second-order information in cases where the Helmholtz equation is

satisfied. Where this is not the case, equations (4.31) and (4.32) are not equivalent, because

all the derivatives in equation (4.30) are linearly independent. Under these circumstances,

some information about the second-order derivatives of the sound field is not preserved by a

B-format recording.


