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5: The First-Order Soundfield Microphone

The first-order soundfield microphone represents the “state of the art” in coincident

microphone array technology. Its use enables recordings for ambisonic reproduction to be

made, by facilitating the direct transduction of live sound fields into first-order B-format. It

may also be employed as a coincident pair for stereo recording, in which application it

provides a number of unique features.

5.1: Principles of Operation

The first-order B-format signals W, X, Y and Z correspond to the outputs of four coincident

microphones; one omnidirectional microphone and three mutually orthogonal first-order

pressure gradient microphones. Because it is not possible to position such a set of

microphones in an arrangement in which true coincidence is sufficiently well approximated,

the first-order soundfield microphone does not have this form. Instead, it consists of a small

regular tetrahedral arrangement of first-order microphone capsules. The output signals from

these capsules are referred to as A-format signals, and the B-format signals are derived from

them by a process of matrixing and filtering.

  The tetrahedron is oriented such that the faces, and hence the directivity axes of the

individual microphone capsules, point in directions which may be described as left forward

up, right backward up, left backward down and right forward down; these are conventionally

denoted LFU, RBU, LBD and RFD. The third letter in each of these designations is

redundant so far as unique identification of each microphone capsule is concerned, but it is

retained here as a matter of convention, and also to avoid confusion with another set of

directional designations which will be introduced latter in connection with the second-order

soundfield microphone.

  Let LFUv  be the output signal from the LFU capsule, and etc.; the A-format to B-format

signal matrix, or “A-B matrix”, is then defined by the equations [28]

RFDLBDRBULFU vvvvW +++=~ (5.1a)

LBDRBURFDLFU vvvvX −−+=~ (5.1b)
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RFDRBULBDLFU vvvvY −−+=~ (5.1c)

RFDLBDRBULFU vvvvZ −−+=~ (5.1d)

where the tilde is used to indicate that these are the signals obtained after matrixing but

before filtering. It will be demonstrated in section 5.2 that, if the four capsules were

genuinely coincident, then the signals ,~W  ,~X  etc., would, with the application of suitable

relative scaling factors, be the required B-format signals W, X, etc. However, the non-zero

spacing of the capsules in practice necessitates filtering to compensate for the effects of phase

differences between their outputs, and in particular to ensure that the B-format signals are

phase-coincident. Each signal associated with a spherical harmonic polar pattern of the same

order requires the same non-coincidence compensation filtering; hence, one filter

characteristic will be required for W, and another for X, Y and Z [42] [7].

  It may be shown that [42] [7], if the four microphone capsules have cardioid polar patterns,

then

{ } ( ) )(~
100 krjjkrjWA +∝ (5.2)

where the notation { }WA ~
0 should be read as “the value of 0A  in the Laplace series expansion

of W~ ”, and

{ }
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(5.3)

The non-coincidence compensation filters should have frequency response characteristics

which are the inverses of these functions. Gerzon suggested the use of filters having the

following characteristics [53]:
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for W and
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for each of the first-order signals, where

c
r

=τ (5.6)

and r is the distance of each microphone capsule from the array centre, so that

rk=ωτ (5.7)

These filter characteristics are rational approximations to the ideal inverse functions; they

were not however derived using any of the standard rational approximation techniques [18].

  It may be shown that there are no first-order or second-order components in the Laplace

series expansion of ;~W  that there is no zeroth-order component in the Laplace series for ,~X

Y~  or ;~Z  and that

{ } 0~
1 =XA (5.8a)

{ } 0~
1,1 =XB (5.8b)

and correspondingly for Y~  and Z~  [42]. These results indicate that there is no crosstalk

between the derived B-format signals in the sense that the spherical harmonic associated with

the desired directional response of any one signal does not appear in the Laplace series

expansion of any other signal.

  The B-format signals obtained from the soundfield microphone may be regarded as

coincident up to a limiting frequency lf  given by [7] [42]

r
cf l π

≈ (5.9)
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In the case of currently available soundfield microphones, r is approximately equal to 1 cm;

this allows effective coincidence to be maintained up to around 10 kHz, a much higher limit

than is achievable using ordinary “coincident” microphone arrangements [28] [42] [94].

Above this limiting frequency, the directional responses of the derived B-format signals are

severely corrupted by unwanted spherical harmonic components. Since there is no precise

definition of the degree of corruption by spurious spherical harmonic components which is

“severe”, so this limit is to that extent arbitrary.

5.2: Analysis

  In this section a mathematical model of the first-order soundfield microphone is developed;

this model is suitable for the purpose of understanding the matrixing and filtering employed

to obtain the first-order B-format signals. A similar model is required to facilitate the design

of the second-order soundfield microphone. Although the results given in the previous

section have long been available in the literature, no comprehensive account of their

derivation has been published. The analysis presented in this section therefore serves to “fill

in the gaps” in the existing literature.

  We assume a coordinate system with the origin at the centre of the tetrahedron. With each

of the four microphone capsules, corresponding to the faces of the tetrahedron, a unit vector

is associated which is normal to that face, and therefore defines the directivity axis of the

capsule. By considering the geometry of the tetrahedron, we find that these unit normal

vectors are

[ ]T
LFU 111

3
1ˆ =u (5.10a)

[ ]T
RBU 111

3
1ˆ −−=u (5.10b)

[ ]T
LBD 111

3
1ˆ −−=u (5.10c)

[ ]T
RFD 111

3
1ˆ −−=u (5.10d)

The position vectors of the capsule centres are then
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LFULFU rux ˆ= (5.11a)

RBURBU rux ˆ= (5.11b)

LBDLBD rux ˆ= (5.11c)

RFDRFD rux ˆ= (5.11d)

The positions and orientations of the capsules are shown pictorially in figure 5.1.

Figure 5.1: Capsule Configuration for First-Order Soundfield Microphone

(reproduced from [28])

  As in the analysis of Chapter 3, we consider a plane wave incident from a direction d̂  with

wave incidence vector .
~k  Let the sound pressure at the origin - that is, at the centre of the

microphone array - be

tj
O Aep ω= (5.12)

then the pressure at each of the capsules may be written
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The A-format signals are given by

[ ] LFULFULFU pba
ba

Gv du ˆˆ1
⋅+

+
= (5.14a)

[ ] RBURBURBU pba
ba

Gv du ˆˆ1
⋅+

+
= (5.14b)

[ ] LBDLBDLBD pba
ba

Gv du ˆˆ1
⋅+

+
= (5.14c)

[ ] RFDRFDRFD pba
ba

Gv du ˆˆ1
⋅+

+
= (5.14d)

Note that, since the incident wave is assumed to be a plane wave, so the direction of

incidence does not depend on the positions of the capsules.

  Substituting the above expressions for the A-format signals in equation (5.1a) gives

[

]duuuu ˆ)ˆˆˆˆ(

)(1~

⋅++++

+++
+

=

RFDRFDLBDLBDRBURBULFULFU

RFDLBDRBULFU

ppppb

ppppa
ba

GW
(5.15)

A coincident capsule approximation is obtained by setting 0=r  (which is equivalent to

assuming that kr is negligibly small); then
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[ ]
[ ]

O

OO

RFDLBDRBULFUOO

p
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+
=

⋅+
+

=

⋅++++
+

=

4

ˆ41

ˆ)ˆˆˆˆ(41~

d0

duuuu

(5.16)

  Considering now ,~X  substitution in equation (5.1b) gives

[

]duuuu ˆ)ˆˆˆˆ(

)(1~

⋅−−++

−−+
+

=

RBURBULBDLBDRFDRFDLFULFU

RBULBDRFDLFU

ppppb

ppppa
ba

GX
(5.17)

and the coincident capsule approximation yields

[ ]

O

O

ORBULBDRFDLFU

RBULBDRFDLFUOOO

p
ba

Gb

p
ba

Gb

p
ba

Gb

bpppa
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GX
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0
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
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

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+
=

⋅−−+
+

=

⋅−−++−
+

=

duuuu

duuuu

 (5.18)

  It can be seen from equations (5.16) and (5.18) that, when kr is negligibly small, the polar

patterns associated with W~  and X~  are just those which are required for W and X, and there is

no phase shift between them; equivalent results hold for the remaining first-order signals.

Hence, to obtain the B-format signals, it is necessary only to apply any additional gain

required to compensate for the differing effective responsivities with which the zeroth-order

and first-order signals are captured, and to provide the 3 dB boost of the first-order signals

relative to W mandated by the B-format specification. If the capsules have cardioid polar

patterns, so that ,1== ba  then equations (5.16) and (5.18) become

OGpW 2~ =  (5.19)
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and

OpGX )cos()cos(
3

2~ φθ= (5.20)

so that a gain of 6  must be applied to the first-order component signals. This is consistent

with the low-frequency responses of the filters described by equations (5.4) and (5.5).

  In the above discussion, the known matrixing scheme employed in the first-order soundfield

microphone has been analysed. A similar method may be used to derive the necessary matrix

relationships; this will now be demonstrated, taking the Y signal as an example. The required

polar pattern

)cos()sin(),( φθφθ KGM Y = (5.21)

where K is an arbitrary constant. This may also be written as

dy ˆˆ),( ⋅= KGMY φθ (5.22)

Now, we may express Y~  in the form

RFDRFDLBDLBDRBURBULFULFU vgvgvgvgY +++=~ (5.23)

where ,LFUg  etc., are the matrix coefficients to be found. Substituting in the expressions for

the A-format signals and making the coincident capsule approximation gives

[

] ORFDRFDLBDLBDRBURBULFULFU

RFDLBDRBULFU

pggggb

gggga
ba

GY

duuuu ˆ)ˆˆˆˆ(

)(1~

⋅++++

+++
+

=
(5.24)

Since there is no omnidirectional component in the desired polar response, we require that

0=+++ RFDLBDRBULFU gggg (5.25)
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while equating first-order gradient components yields

yuuuu

yuuuu

ˆ)(ˆˆˆˆ

ˆ)ˆˆˆˆ(

b
baKgggg

KGgggg
ba

Gb

RFDRFDLBDLBDRBURBULFULFU

RFDRFDLBDLBDRBURBULFULFU

+
=+++

=+++
+ (5.26)

Equations (5.25) and (5.26) may be solved to give

b
baKg LFU

)(
4
3 +

= (5.27a)

b
baKg RBU

)(
4
3 +

−= (5.27b)

b
baKg LBD

)(
4
3 +

= (5.27c)

b
baKg RFD

)(
4
3 +

−= (5.27d)

These coefficients do indeed give the desired combination of A-format signals, as may be

seen by comparison with equation (5.1c), although we have included additional scaling

information here. It will be appreciated that whether these scaling factors are included in the

A-B matrix or the non-coincidence compensation filter is a matter of arbitrary choice.

  We now consider the derivation of the frequency response functions given by equations

(5.2) and (5.3). At this stage we must abandon the coincident capsule approximation, since

these frequency responses depend on phase differences between the capsules. Substituting

equation (5.14) in equation (5.1a), we obtain

[ ] [ ]
[ ] [ ]

[ ]{ [ ]
[ ] [ ] }RFDRFDLBDLBD

RBURBULFULFU

RFDRFDLBDLBD

RBURBULFULFU

pbapba

pbapba
ba

G

pba
ba

Gpba
ba

G

pba
ba

Gpba
ba

GW

dudu

dudu

dudu

dudu

ˆˆˆˆ

ˆˆˆˆ1

ˆˆ1ˆˆ1

ˆˆ1ˆˆ1~

⋅++⋅++

⋅++⋅+
+

=

⋅+
+

+⋅+
+

+

⋅+
+

+⋅+
+

=

(5.28)

Substituting from equation (5.13) and leaving the Op  factor implicit gives
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[ ] [ ]{
[ ] [ ] }

[ ] [ ]{
[ ] [ ] }RFDLBD
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jkr
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⋅⋅
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=
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⋅++⋅+
+
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(5.29)

We may now apply equation (2.15):
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(5.30)

Rearranging, we obtain




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∞
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∞
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∞
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∞
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∞
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∞
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krjPnj

krjPnj

krjPnj

krjPnj
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Gb

krjPnjkrjPnj

krjPnjkrjPnj
ba

GaW

dudu

dudu

dudu

dudu

dudu

dudu

(5.31)

Now
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(5.32)

where û  is any one of ,ˆ LFUu  ,ˆ RBUu  etc. We may rewrite each of the summations in equation

(5.31) in this way; fairly lengthy algebraic and trigonometric manipulation then gives

Wkrj
ba

Gbjkrj
ba

GaW ~10 )(4)(4~ Φ+
+

+
+

= (5.33)
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



⋅+⋅+

⋅+⋅+

⋅+⋅+





⋅+⋅
+

+





⋅++⋅++

⋅++




⋅+
+

=

∑

∑

∑

∑

∑∑

∑∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

2

2

2

2

33

33

~

)()ˆˆ()12()ˆˆ(

)()ˆˆ()12()ˆˆ(

)()ˆˆ()12()ˆˆ(

)()ˆˆ()12()ˆˆ(

)()ˆˆ()12()()ˆˆ()12(

)()ˆˆ()12()()ˆˆ()12(

n
nRFDn

n
RFD

n
nLBDn

n
LBD

n
nRBUn

n
RBU

n
nLFUn

n
LFU

n
nRFDn

n

n
nLBDn

n

n
nRBUn

n

n
nLFUn

n
W

krjPnj

krjPnj
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dudu

dudu

dudu

dudu

duduΦ

(5.34)

and contains only spherical harmonic components of order three or higher. These expressions

show that

{ } )()(~
100 krjbjkrajWA +∝ (5.35)

and that there are no first-order or second-order spherical harmonic components present.
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Equation (5.2) may be obtained from equation (5.35) by putting .ba =

  A similar method may be applied to each of the first-order signals. Taking X~  as an

example, we obtain

[ ] Xkrbjkrajjkrbj
ba

GX ~210 )cos()cos()(2)(3)(
)(3

4~ Φφθ +−+
+

= (5.36)

where X~Φ  contains only spherical harmonic components of order two or higher. We

therefore have

{ } )(2)(3)(~
2101,1 krbjkrajjkrbjXA −+∝ (5.37)

from which equation (5.3) follows by again setting .ba =

5.3: Additional B-Format Signal Processing

The first-order soundfield microphone provides facilities to process the derived B-format

signals in a number of ways. It is desirable that a second-order soundfield microphone should

provide corresponding functionality, so these features are described here.

5.3.1: Rotation & Elevation

The rotation and elevation controls allow the soundfield microphone to be “electronically

steered” by modifying the B-format signals in such a way that the new signals correspond to

those which would have been obtained had the microphone been differently orientated.

  Rotation requires modification only of X and Y, since W and Z are independent of azimuth.

Let 1X  and 1Y  be the original signals, and 2X  and 2Y  be the modified signals. Then

112 )sin()cos( YXX θθ += (5.37a)

112 )cos()sin( YXY θθ +−= (5.37b)
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where θ is the angle through which the microphone array is effectively rotated. A positive

value for θ implies an anti-clockwise rotation of the microphone array (which is equivalent to

a clockwise rotation of the encoded sound field); hence, setting °= 90θ  will align the

effective centre-front direction with the physical centre-left direction.

  Elevation requires only X and Z to be modified:

112 )sin()cos( ZXX φφ += (5.38a)

112 )cos()sin( ZXZ φφ +−= (5.38b)

where φ is the required inclination or declination. A positive value for φ implies that the

effective centre-front direction is elevated above the horizontal plane; therefore, setting

°= 90φ  aligns the effective centre-front direction with the physical centre-up direction.

5.3.2: Side-Fire / End-Fire Switching & Inversion

The soundfield microphone has the common approximate physical form of a cylinder, with

the transducer array itself mounted inside one end. It may be operated in either “side-fire” or

“end-fire” modes. In side-fire mode, the microphone is positioned vertically with the

transducer array uppermost, and the centre-front direction is perpendicular to the axis of the

casing. In end-fire mode, the microphone is positioned horizontally and the casing axis is

aligned with the centre-front direction.

  By default, the first-order soundfield microphone is operated in side-fire mode. When it is

instead deployed in end-fire mode, compensatory signal processing is applied so that the

output B-format signals are identical to those which would have been obtained had the

microphone been operated in side-fire mode. When the microphone is positioned for end-fire

operation, it is tipped forward in a 90° rotation about the array y axis; the corrective action

required is therefore equivalent to a 90° elevation. Putting °= 90φ  in equation (5.38) yields

12 ZX = (5.39a)

12 XZ −= (5.39b)
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  It is also desirable on occasion to invert the microphone; this is useful, for example, when

suspending it from the ceiling of a performance venue, which is a common recording practice

[20]. Inversion corresponds to a 180° rotation about the array x axis, so that the necessary

compensation is a polarity reversal of the Y and Z signals:

12 YY −= (5.40a)

12 ZZ −= (5.40b)

  Although it has been convenient here to describe rotation and elevation before end-fire /

side-fire and inversion switching, in practice this switching is applied first; the rotation and

elevation controls therefore function identically regardless of which of the three modes the

microphone is deployed in.

5.3.3: Dominance

The dominance facility is usually described as a form of “zoom” control; it can be used to

modify the encoded sound field in such as a way as to emphasise sources located in a

particular direction, and in this sense is somewhat similar to a physical movement of the

microphone in that direction [29] [32].

  The forward dominance transformation is described by the equations [50] [52]

( ) ( ) 1
1

1
1

2 8
1

2
1 XWW −− −++= λλλλ (5.41a)

( ) ( ) 1
1

1
1

2 2
1

2
1 WXX −− −++= λλλλ (5.41b)

while Y and Z remain unchanged. The quantity λ is termed the “dominance gain”. Let the

amplitude, azimuth and elevation of a source in the original encoded sound field be ,1A  1θ

and ,1φ  and let the modified quantities be ,2A  2θ  and .2φ  It may be shown (see Appendix 3)

that the effect of this transformation is to modify the encoded sound field in the following

way:
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In the pantophonic case where 021 == φφ  these reduce to

( ) ( )[ ] 11
1

12 )cos(1)cos(1
2
1 AA θλθλ −++= − (5.43a)
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++−
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22
1

2 θλλ
θλ

θ
−++

= (5.43c)

The effect of the forward dominance transformation on a centre-front source is to multiply

the amplitude by λ, while the angular distance from centre-front for a source anywhere in a

small region about the centre-front direction is multiplied by .1−λ  Note that this means that,

while sources near the centre-front direction are emphasised by the increase in amplitude,

they are also moved closer to the centre-front axis. In this respect, therefore, the effect of

dominance is somewhat different to the effect of physically moving the microphone array; it

is nevertheless subjectively acceptable.

  Upward dominance can be implemented by replacing X with Z in equation (5.41) and

leaving X unchanged. Sideways dominance is similarly possible, but rarely required [32]. As

well as being provided as a feature of the soundfield microphone, a dominance control may

be included in an ambisonic decoder to allow the listener to achieve this “zoom” effect on

playback [32]. Some advanced ambisonic decoders may also make use of a dominance

transformation as part of the decoding algorithm [50] [52].
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5.4: Synthesis of Stereo Pairs

The soundfield microphone has been described as “... providing output signals equivalent to

the outputs which would be obtained from a plurality of coincident microphones” [53]. It has

previously been stated that the soundfield microphone may be utilised as a coincident pair for

two-channel stereo recording, as well as for B-format recording. This follows from the fact

that a linear combination of first-order B-format signals can be found which is equivalent to

the output of any desired first-order microphone in any orientation. Clearly, by forming two

(or more) different combinations of the B-format signals, the outputs that would have been

obtained from two (or more) coincident first-order microphones may be synthesised.

  The soundfield microphone offers a number of advantages over other coincident pair

microphone arrangements. The much higher frequency to which effective coincidence is

maintained is clearly of benefit as far as the quality of the recording is concerned, since phase

differences between signals due to microphone spacing are known to degrade both spatial

and tonal qualities of recordings [20] [42] [63]. In addition to this, because any possible first-

order polar pattern can be obtained from the B-format signals, it follows that a soundfield

microphone may act as any possible stereo coincident pair. The two notional microphones

may be given any first-order polar pattern, the angle between them may be adjusted, and the

pair may be steered and tilted to point in any direction. These adjustments require only a

change in the relative contributions of the B-format signals to each synthesised microphone

output, and so they may all be performed electronically; that is, remotely and without

physically moving the microphone.

  It is possible to make a two-channel recording of the outputs from the synthesised

coincident pair if that is required. However, if instead the four B-format signals are recorded,

then all of the options as described above remain available at the post-session production

stage. The choice of stereo pair, with all its aesthetic implications, may then be made at

leisure rather than “on the spot” during the perhaps limited time of a recording session or

performance. This may be of particular benefit when a live recording is being made away

from the studio, since location monitoring facilities are often less than ideal [20] [94].


