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6: The Second-Order Soundfield Microphone

Gerzon stated [40] that a second-order soundfield microphone may be constructed “...using

twelve small cardioid or hypercardioid capsules mounted to form the faces of a regular

dodecahedron having a small diameter ... the second-harmonic aspects of the directional

pickup can be derived from these by techniques similar to the Blumlein difference

technique.” Since the dodecahedron is the simplest regular polyhedron with nine or more

faces, so a dodecahedral array is the simplest arrangement of microphones from which the

nine independent signals comprising the second-order B-format set can be obtained.

6.1: Geometry of the Dodecahedron

It is desirable to maximise the degree of symmetry present in the coefficients of the A-B

matrix, since this simplifies the mathematical treatment (and will also simplify the eventual

implementation).

  The symmetry which is apparent in the coefficients of the A-B matrix in the case of the

first-order soundfield microphone is related to the symmetry of the tetrahedron; specifically,

to the presence of C3 operations in the group of rotational symmetries of the tetrahedron [61].

Each C3 axis passes through a vertex and the centroid of the opposite face of the tetrahedron.

Rotation by 120° about one of these axes has the effect of taking )cos()cos( φθ  to

)cos()sin( φθ  (or vice versa) and etc.; i.e., of inducing a cyclic permutation of the polar

patterns associated with the first-order spherical harmonic component signals. The same

rotation interchanges the faces of the tetrahedron in a corresponding manner.

  Such C3 operations are also present in the group of symmetries of the dodecahedron. To

maximise the symmetry in the A-B matrix coefficients for the second-order soundfield

microphone, the dodecahedral capsule array is oriented such that appropriate C3 axes (which

pass through two diametrically opposed vertices) are aligned with those of the tetrahedral

first-order soundfield microphone array.

  By inspection, two orientations which satisfy this criterion may be identified; selection

between these is arbitrary. The chosen orientation is such that the highest part of the
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dodecahedron is an edge running front-back, and the front-most part is a horizontal edge - see

figure 6.1.

Figure 6.1: Orientation of Dodecahedron

(viewed from centre-front direction)

  Two faces, having the front-most edge in common, point symmetrically up and down, with

no left / right component in their orientation; these faces are conveniently labelled FU and

FD. Their (outward) unit surface normal vectors are
















=

z

x

FU 0û (6.1)

and
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−
=

z

x

FD 0û (6.2)

The cosine of the angle between vectors normal to two adjacent faces of a regular polyhedron

is equal to the cosine of the dihedral angel at each edge of that polyhedron; hence, the scalar

product of FUû  and FDû  is equal to the cosine of the dihedral angle at the edges of a regular

dodecahedron.

  Now, for any regular polyhedron,

( )
( )










= −

f

v
d e

e
π
π

ϑ
sin
cos

sin2 1 (6.3)

where dϑ  is the dihedral angle, fe  is the number of edges around each face, and ve  is the

number of edges which meet at each vertex [66]. Rearranging gives

( )
( )f

vd

e
e

π
πϑ

sin
cos

2
sin =






 (6.4)

For a dodecahedron, 3=ve  and ;5=fe  hence

55

2

552
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)5/sin(
)3/cos(

2
sin

−
=

−
=

=







π
πϑd

(6.5)

Now since, for any angle ,ϕ

)(sin1)cos( 2 ϕϕ −±= (6.6)
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so we may use the trigonometric “double angle” identity for sines to obtain
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(6.7)

where the positive square root is taken in the substitution from equation (6.6) because the

dihedral angle must by definition be less than 180°. We can now find the cosine of the

dihedral angle:

( )

( )( )

5
1
10
2

10
526531

10
51531

)(sin1)cos(
2

2

=

=

+−
−=













 +−
−=

−= dd ϑϑ

(6.8)

where the positive square root is taken since (by inspection) the angle in question is less than

90°.

  We can now determine the values of the elements of FUû  and .ˆ FDu  Since they are unit

vectors,
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122 =+ zx (6.9)

and since their scalar product is equal to ,51

5
122 =− zx (6.10)

Equations (6.9) and (6.10) may be solved to give
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1

5
15
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5

5
11

2
1

+=

+
=









+=x

(6.11)

and

55
10
1

5
15

2
5

5
11

2
1
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−=z

(6.12)

so that the vectors are
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=
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0

55
10
1

ˆ FUu (6.13)

and
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  The opposite (backward-facing) faces, labelled BU and BD, necessarily have unit surface

normal vectors which are obtained by multiplying FDû  and FUû  by :1−
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ˆ BUu (6.15)

and
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0

55
10
1

ˆ BDu (6.16)

  The remaining eight faces can similarly be grouped into pairs for which the surface normal

vectors are equal in one component, equal and opposite in another, and zero in the third;

furthermore, the vectors associated with each pair differ from those associated with the

opposite pair only by a factor of .1−  Therefore, calculations equivalent to those above may

be used to obtain these vectors.

  It is convenient to define

51050
10
155

10
1

+=+=+χ (6.17a)

51050
10
155

10
1

−=−=−χ (6.17b)

The unit surface normal vectors for the faces of the dodecahedron may then be expressed in
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terms of these two values as

[ ]T
FU

−+= χχ 0û  (6.18a)

[ ]T
FD

−+ −= χχ 0û (6.18b)

[ ]T
BU

−+−= χχ 0û (6.18c)

[ ]T
BD

−+ −−= χχ 0û (6.18d)

[ ]T
LF 0ˆ +−= χχu (6.18e)

[ ]T
LB 0ˆ +−−= χχu (6.18f)

[ ]T
RF 0ˆ +− −= χχu (6.18g)

[ ]T
RB 0ˆ +− −−= χχu (6.18h)

[ ]T
UL

+−= χχ0û (6.18i)

[ ]T
UR

+−−= χχ0û (6.18j)

[ ]T
DL

+− −= χχ0û (6.18k)

[ ]T
DR

+− −−= χχ0û (6.18l)

The constants +χ  and −χ  satisfy the following relationships:
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2
1)( 2 +=+χ (6.19a)

10
5

2
1)( 2 −=−χ (6.19b)

1)()( 22 =+ −+ χχ (6.19c)

5
1)()( 22 =− −+ χχ (6.19d)
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=−+ χχ (6.19e)
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=
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χ
χ (6.19f)

2
15 −

=+

−

χ
χ (6.19g)
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6.2: Derivation of the A-B Matrix

The method described in Chapter 5 for the derivation of the A-B matrix coefficients in the

case of the first-order soundfield microphone is not applicable when the second-order

soundfield microphone is considered. While we can write equations similar to equations

(5.25) and (5.26) for any of the zeroth-order or first-order signals, this leaves us in each case

with twelve unknown matrix coefficients and only four equations.

  A different approach is therefore required. Let a signal H~  be a general linear combination

of the twelve A-format signals:

DRDRDLDLURURULULRBRBRFRF

LBLBLFLFBDBDBUBUFDFDFUFU

vgvgvgvgvgvg
vgvgvgvgvgvgH

++++++
+++++=~

 (6.20)

or, by substituting for each of the A-format signals,

[ ] [ ][
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ] ] O

jkr
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DLDL

jkr
URUR
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BDBD
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FDFD
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ˆˆˆˆ
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ˆˆˆˆ

ˆˆˆˆ
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ˆˆˆˆ

ˆˆˆˆ~

⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅++⋅++

⋅++⋅++

⋅++⋅++

⋅++⋅++

⋅++⋅++

⋅++⋅+
+

=

(6.21)

We may obtain expressions in terms of the matrix coefficients ,FUg  ,FDg  etc., for the

coefficient of each spherical harmonic component in the Laplace series expansion of H~  by

evaluating the integrals given in equation (2.10). For each B-format signal, we can then

equate these expressions to the desired values of the coefficients; the resulting equations may

then be solved to find the matrix coefficients.

  Note that this method is applicable to the second-order component signals; a method

employing a coincident capsule approximation could not be used, since it is the phase

differences between the capsules that allow these signals to be obtained. Furthermore, this
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approach automatically includes the dependence of the Laplace series coefficients on kr, so

that it is not necessary to determine the frequency response functions separately from the

matrix coefficients.

  We consider first the zeroth-order component of :~H

[ ] [ ]{
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ] } θφφ

θφφ
π

π π

π

π π

π

ddebagebag

ebagebag

ebagebag

ebagebag

ebagebag

ebagebagK

ddHA

DRDL
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(6.22)

where

ba
GK
+

=
π4
1

0 (6.23)

For compactness, we introduce the notation

( ) ∫ ∫
−

=
π π

π

θφφφθφθΛ
2

0

2/

2/

)cos(),(),( ddff (6.24)

Multiplying out the bracketed factors in equation (6.22) and using the linearity property of

integration, we obtain
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Rearranging gives
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(6.26)

It is now necessary to evaluate each of the integrals in this expression. We first observe that
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so that (omitting the constant of integration)

)'sin()'sin( ')'cos( φφ φφ jkrjkr e
kr
jde −=∫ (6.28)

Now consider the first integral in the above expression:

∫ ∫
−

⋅
π π

π

θφφ
2
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2/

2/

ˆˆ )cos( dde FUjkr du

If a transformation of variables can be found that takes du ˆˆ ⋅FU  to ),'sin(φ  then it will be

possible to use the result above to evaluate the integral. We know that
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χ
0ˆ FUu (6.29)

and
















=

)sin(
)cos()sin(
)cos()cos(

ˆ

φ
φθ
φθ

d (6.30)

so that

)sin()cos()cos(ˆˆ φχφθχ −+ +=⋅duFU (6.31)

The integrand is expressed in terms of polar coordinate angles ),( φθ , with which cartesian

coordinates ),,( zyx  may be associated. The transformed integrand will be expressed in
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terms of )','( φθ  or )',','( zyx . We require then that

)sin()cos()cos()'sin( φχφθχφ −+ += (6.32)

and, since )'sin(φ  is by definition the cosine of the angle made with the 'z  axis, this may also

be stated as

FUuz ˆ'ˆ = (6.33)

Expressing both in the original coordinate system, we therefore have
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ẑ (6.34)

and
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0'ẑ (6.35)

and it can be seen that the required coordinate transformation is a rotation about the y axis. A

standard rotation matrix may therefore be used:
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where
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It may easily be verified that this is consistent with the requirements expressed by equations

(6.32) and (6.33):































 −
=
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+−

−

+

1
0
0

0
010

0
0
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χχ

χ

χ
(6.38)

Hence we have

)sin()cos()cos()'cos()'cos( φχφθχφθ +− −= (6.39a)

)cos()sin()'cos()'sin( φθφθ = (6.39b)

)sin()cos()cos()'sin( φχφθχφ −+ += (6.39c)

The integration now becomes
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( ) ( ))'sin(ˆˆ ' φΛΛ jkrjkr ee FU =⋅du (6.41)

where the notation
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π π
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2/

'')'cos()','()','(' ddff (6.42)

indicates that we are working in the transformed coordinate system.

  Evaluation of the transformed integral is straightforward:
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  Each of the eleven similar integrals evaluates to the same result. The transformation

matrices employed are listed in Appendix 4.

  We now consider the second set of integrals, such as
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Using the method of integration by parts, we obtain
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Hence,
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and so
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π

φ

=

= ∫∫∫ ∫
−− (6.47)

Again, each of the eleven similar integrals evaluates to the same result. Substituting these

results into equation (6.26) gives

[{
] }

[{
] }

[
] [ ])()(

)(
4

)(
4

10

1

0

0

00

krjbjkrajgggg

gggggggg
ba

G
krjgggggg

ggggggjbK
krjgggggg

ggggggaKA

DRDLURUL

RBRFLBLFBDBUFDFU

DRDLURULRBRF

LBLFBDBUFDFU

DRDLURULRBRF

LBLFBDBUFDFU

+×++++

+++++++
+

=

++++++
++++++

++++++
+++++=

π

π

(6.48)

  Substantially the same method may be used to calculate the coefficients of the spherical

harmonics of higher order, although there are some additional complications. To evaluate

integrals such as
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∫ ∫
−

⋅
π π

π

θφφφθ
2

0

2/

2/

ˆˆ )cos()cos()cos( dde FUjkr du

it is necessary to express )cos()cos( φθ  (and in other cases )cos()sin( φθ  or )sin(φ ) in terms

of the transformed coordinate system. This may be accomplished by observing that if
















=

















)sin(
)cos()sin(
)cos()cos(

)'sin(
)'cos()'sin(
)'cos()'cos(

φ
φθ
φθ

φ
φθ
φθ

M (6.49)

then
















=
















−

)'sin(
)'cos()'sin(
)'cos()'cos(

)sin(
)cos()sin(
)cos()cos(

1

φ
φθ
φθ

φ
φθ
φθ

M (6.50)

  When computing the second-order coefficients, integrals such as

∫ ∫
−

⋅
π π

π

θφφφθ
2

0

2/

2/

2ˆˆ )cos()(cos)2cos( dde FUjkr du

arise. Factors such as )(cos)2cos( 2 φθ  can be expanded, by application of trigonometric

identities, into a polynomial in terms of ),cos()cos( φθ  )cos()sin( φθ  and ),sin(φ  which can

then be transformed using inverse matrices as described above. Since a spherical harmonic is

(by definition) a polynomial in the three direction cosines, such an expansion will always be

possible for any spherical harmonic of any order.

  The integrals which remain to be evaluated after these transformations have been performed

become more complicated as the spherical harmonic order is increased. However, it so

happens that each such integral can be evaluated by applying the method of integration by

parts and using a previously found result. A list of the integrals which arise is given in

Appendix 4.

  The following expressions are obtained for the coefficients of the zeroth-order, first-order
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and second-order components of :~H

[
] [ ])()( 10

0

krjbjkrajgg

gggggggggg
ba

GA

DRDL

URULRBRFLBLFBDBUFDFU

+×++

+++++++++
+

=
 (6.51a)

[ ] [ ]( )
[ ])(2)(3)( 210

1

krbjkrajjkrbj

gggggggg
ba

GA BDFDBUFUDRDLURUL

−+×

−−++−−+
+

= −+ χχ
(6.51b)

[ ] [ ]( )
[ ])(2)(3)( 210

1,1

krbjkrajjkrbj

gggggggg
ba

GA RBLBRFLFBDBUFDFU

−+×

−−++−−+
+

= −+ χχ
(6.51c)

[ ] [ ]( )
[ ])(2)(3)( 210

1,1

krbjkrajjkrbj

gggggggg
ba

GB DRURDLULRBRFLBLF

−+×

−−++−−+
+

= −+ χχ
(6.51d)

[ ][ ] [ ](
[ ][ ])

[ ])(3)(5)(2
35

35
54

1

321

2

krbjjkrajkrbjj
gggg

gggggggg
ba

GA

DRDLURUL

RBRFLBLFBDBUFDFU

−−×
+++++

+++−+++−
+

=

(6.51e)

[ ] [ ])(3)(5)(2
5

1
3211,2 krbjjkrajkrbjjgggg

ba
GA BDBUFDFU −−×+−−
+

= (6.51f)

[ ]( [ ]

[ ])
[ ])(3)(5)(2

)(
5

1)(
4
1

321

2

2
2,2

krbjjkrajkrbjj
gggg

gggggggg
ba

GA

DRDLURUL

RBRFLBLFBDBUFDFU

−−×
+++−

+++−+++
+

=

−

+

χ

χ

(6.51g)

[ ] [ ])(3)(5)(2
5

1
3211,2 krbjjkrajkrbjjgggg

ba
GB DRDLURUL −−×+−−
+

= (6.51h)

[ ] [ ])(3)(5)(2
52

1
3212,2 krbjjkrajkrbjjgggg

ba
GB RBRFLBLF −−×+−−
+

= (6.51i)

  Since these nine equations are not sufficient to determine the twelve matrix coefficients, we

next consider the coefficients of the third-order spherical harmonics. Proceeding as before,

we obtain:
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[ ] [ ](
[ ] [ ])

[ ])(4)(7)(3
15

51
4
1

432

3

krbjkrajjkrbj
gggg

gggg
ba

GA

DRDLURUL

BDFDBUFU

−+×
−−+−−

−−++
+

=

+

−

χ

χ

(6.52a)

[ ] [ ](
[ ])

[ ])(4)(7)(3
2

35
8
1

432

1,3

krbjkrajjkrbj
gggg

gggg
ba

GA

RBLBRFLF

BDBUFDFU

−+×
−−++

−−+−
+

=

−

+

χ

χ

(6.52b)

[ ] [ ](
[ ] [ ])

[ ])(4)(7)(3
15

51
58

1

432

2,3

krbjkrajjkrbj
gggg

gggg
ba

GA

URULDRDL

BUFUBDFD

−+×
−−+−−

−−++
+

=

+

−

χ

χ

(6.52c)

[ ] [ ](
[ ] [ ])

[ ])(4)(7)(3
522

51
240

5

432

3,3

krbjkrajjkrbj
gggg

gggg
ba

GA

RBLBRFLF

FDFUBDBU

−+×
−−+++

−−++
+

=

−

+

χ

χ

(6.52d)

[ ](
[ ] [ ])

[ ])(4)(7)(3
53

2
8
1

432

1,3

krbjkrajjkrbj
gggg

gggg
ba

GB

DLULDRUR

RBRFLBLF

−+×
−−+++

−−+
+

=

−

+

χ

χ

(6.52e)

02,3 =B (6.52f)

[ ] [ ](
[ ] [ ])

[ ])(4)(7)(3
15

252
240

5

432

3,3

krbjkrajjkrbj
gggg

gggg
ba

GB

DRURDLUL

LBLFRBRF

−+×
−−+−+

−−+−
+

=

−

+

χ

χ

(6.52g)

In total, we now have fifteen equations (excluding that involving ,2,3B  which is independent

of the matrix coefficients). However, the third-order Laplace series coefficients are not all

linearly independent; it may be observed that

2,33 52 AA −= (6.53a)

( ) 3,31,3 5256 AA −= (6.53b)

( ) 3,31,3 5256 BB +−= (6.53c)
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Hence, we have obtained exactly twelve linearly independent equations in the twelve A-B

matrix coefficients; these can therefore now be determined. For each B-format signal, we set

the coefficient of the appropriate spherical harmonic to a suitable value, and all other

coefficients to zero; we then solve the resulting set of equations for the twelve matrix

coefficients. Note that, while this “suitable value” is 1 for the zeroth-order and first-order

component signals, it takes different values for the second-order signals because of the

scaling factors which appear in the definitions of the second-order spherical harmonics. For

example, the coefficient 2,2B  is associated with the spherical harmonic );(cos)2sin(3 2 φθ

hence, to obtain the desired polar response, 2,2B  must be set equal to .3
1

  It is desired that the A-B matrix should be frequency-independent, as it is for the first-order

soundfield microphone; hence, the frequency response functions are omitted at this stage. For

convenience we also disregard the )( baG +  factor. The A-B matrix derived therefore

depends only on the geometry of the array; the polar responses of the individual capsules will

be taken into account when designing the non-coincidence compensation filters.

  The matrix coefficients obtained are shown in table 6.1.

  Note that each of the signals S, T and V is obtained from a rectangular arrangement of

capsules similar to that described in section 3.6.
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W X Y Z R S T U V
FUg

12
1 +χ

4
1

0 −χ
4
1 ( )35

48
5

−
6
5 0 ( )51

24
5

+ 0

FDg
12
1 +χ

4
1

0 −− χ
4
1 ( )35

48
5

−
6
5

− 0 ( )51
24

5
+ 0

BUg
12
1 +− χ

4
1

0 −χ
4
1 ( )35

48
5

−
6
5

− 0 ( )51
24

5
+ 0

BDg
12
1 +− χ

4
1

0 −− χ
4
1 ( )35

48
5

−
6
5 0 ( )51

24
5

+ 0

LFg
12
1 −χ

4
1 +χ

4
1

0 24
5

− 0 0
12

5
−

6
5

LBg
12
1 −− χ

4
1 +χ

4
1

0 24
5

− 0 0
12

5
−

6
5

−

RFg
12
1 −χ

4
1 +− χ

4
1

0 24
5

− 0 0
12

5
−

6
5

−

RBg
12
1 −− χ

4
1 +− χ

4
1

0 24
5

− 0 0
12

5
−

6
5

ULg
12
1

0 −χ
4
1 +χ

4
1 ( )35

48
5

+ 0
6
5 ( )51

24
5

− 0

URg
12
1

0 −− χ
4
1 +χ

4
1 ( )35

48
5

+ 0
6
5

− ( )51
24

5
− 0

DLg
12
1

0 −χ
4
1 +− χ

4
1 ( )35

48
5

+ 0
6
5

− ( )51
24

5
− 0

DRg
12
1

0 −− χ
4
1 +− χ

4
1 ( )35

48
5

+ 0
6
5 ( )51

24
5

− 0

Table 6.1: A-B Matrix Coefficients for Second-Order Soundfield Microphone

6.3: Presence of Unwanted Spherical Harmonic Components

Using the methods described in the previous section, it is possible to obtain expressions in

terms of the A-B matrix coefficients for higher order spherical harmonic components of .~H

Since these matrix coefficients are now known for each of the B-format signals, it is possible

to establish the presence in each of the B-format signals of unwanted spherical harmonic

components.

  It is convenient to define the functions



    On the Theory of the Second-Order Soundfield Microphone Philip Cotterell

128

[ ]
( )[ ]





 −−+=

+−+−−=

−+−++−=

−

+−
−

+−
−

)()()1()12(

)()12()()1()()1(

)()1)(1()()12()()1(),(

11

11
)1(

αν
α
α

ν

ανααν

αναναναν

n
nn

nnn
n

nnn
n

j
d

djjnj

jnjnnjjj
jnjnjjnjnИ

(6.54)

and to introduce normalised capsule polar pattern constants

ba
aa
+

=' (6.55a)

'1

'

a
ba

bb

−=
+

= (6.55b)

None of the signals contains third-order spherical harmonic components, since these were

eliminated as part of the A-B matrix design procedure. The fourth-order Laplace series

coefficients are

( )[ ]{ [ ]

( )[ ]} ),'(53

653
16
1

4

4

kragggg

ggggggggGA

DRDLURUL

RBRFLBLFBDBUFDFU

И×+++−+

+++−++++−=
(6.56a)

[ ] ),'(
40

57
41,4 kraggggGA BDBUFDFU И×+−−

−
= (6.56b)

( )[ ] [ ]{
( )[ ]} ),'(59

5259
240
1

4

2,4

kragggg

ggggggggGA

DRDLURUL

RBRFLBLFBDBUFDFU

И×+++++

+++−+++−−=
(6.56c)

[ ] ),'(
240

51
43,4 kraggggGA BDBUFDFU И×−++−

+
= (6.56d)

( )[ ] [ ]{
( )[ ]} ),'(53

653
1920

1

4

4,4

kragggg

ggggggggGA

DRDLURUL

RBRFLBLFBDBUFDFU

И×+++−−

++++++++−=
(6.56e)

[ ] ),'(
40

57
41,4 kraggggGB DRDLURUL И×−++−

+
= (6.56f)

[ ] ),'(
60

5
42,4 kraggggGB RBRFLBLF И×+−−= (6.56g)
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[ ] ),'(
240

15
43,4 kraggggGB DRDLURUL И×+−−

−
= (6.56h)

[ ] ),'(
240
1

44,4 kraggggGB RBRFLBLF И×+−−= (6.56i)

The fifth-order coefficients are given by

( ) [ ]{
( ) [ ]} ),'(51135

51135
400

5

5

5

kragggg

ggggGA

DRDLURUL

BDBUFDFU

И×++−−++
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(6.57a)
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The sixth-order Laplace series coefficients are given by
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( )[ ]{
[ ]

( )[ ]} ),'(25

11

25
576000

5

6

6,6

kragggg

gggg

ggggGA
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400

515
61,6 kraggggB DRDLURUL И×−++−

−
= (6.58h)
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5
62,6 kraggggB RBRFLBLF И×−++−= (6.58i)
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5715
63,6 kraggggB DRDLURUL И×+−−

+
= (6.58j)



    On the Theory of the Second-Order Soundfield Microphone Philip Cotterell

131

[ ] ),'(
2400

1
64,6 kraggggB RBRFLBLF И×−++−= (6.58k)

[ ] ),'(
96000

553
65,6 kraggggB DRDLURUL И×−++−

−
= (6.58l)

[ ] ),'(
288000

5
66,6 kraggggB RBRFLBLF И×+−−= (6.58m)

  From these general expressions, the Laplace series coefficients for each of the B-format

signals are obtained by substituting in the known values for the A-B matrix coefficients. It so

happens that the majority of the coefficients in the Laplace series for each signal are zero;

only the non-zero coefficients are listed here.

  For :~W

{ } ),'(
80
11~

66 kraWA GИ= (6.59a)

{ } ),'(
1600

511~
62,6 kraGWA И= (6.59b)

{ } ),'(
28800

11~
64,6 kraWA GИ−= (6.59c)

{ } ),'(
115200

5~
66,6 kraGWA И−= (6.59d)

  For :~X

{ } ),'(
400

15521~
51,5 kraGXA И−

−= (6.60a)

{ } ),'(
3200

5315~
53,5 kraGXA И+

= (6.60b)

{ } ),'(
19200

153~
55,5 kraGXA И−

= (6.60c)

  For :~Y

{ } ),'(
400

15521~
51,5 kraGYB И+

= (6.61a)
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{ } ),'(
3200

5315~
53,5 kraGYB И−

−= (6.61b)

{ } ),'(
19200

153~
55,5 kraGYB И+

−= (6.61c)

  For :~Z

{ } ),'(
40
9~

55 kraGZA И−= (6.62a)

{ } ),'(
200

53~
52,5 kraGZA И−= (6.62b)

{ } ),'(
960
1~

54,5 kraGZA И= (6.62c)

  For :~R

{ } ),'(
16
5~

44 kraGRA И−= (6.63a)

{ } ),'(
240

57~
42,4 kraGRA И= (6.63b)

{ } ),'(
384
1~

44,4 kraGRA И−= (6.63c)

{ } ),'(
120
21~

66 kraRA GИ= (6.63d)

{ } ),'(
480

53~
62,6 kraRA GИ= (6.63e)

{ } ),'(
14400

1~
64,6 kraRA GИ= (6.63f)

{ } ),'(
57600

5~
66,6 kraRA GИ= (6.63g)

  For :~S

{ } ),'(
60

557~
41,4 kraGSA И−

= (6.64a)

{ } ),'(
360

55~
43,4 kraGSA И+

−= (6.64b)

{ } ),'(
120

153~
61,6 kraSA GИ+

= (6.64c)
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{ } ),'(
2880

537~
63,6 kraSA GИ−

−= (6.64d)

{ } ),'(
28800

53~
65,6 kraSA GИ+

−= (6.64e)

  For :~T

{ } ),'(
60

557~
41,4 kraGTB И+

−= (6.65a)

{ } ),'(
360

55~
43,4 kraGTB И−

= (6.65b)

{ } ),'(
120

153~
61,6 kraTB GИ−

−= (6.65c)

{ } ),'(
2880

537~
63,6 kraTB GИ+

= (6.65d)

{ } ),'(
28800

53~
65,6 kraTB GИ−

−= (6.65e)

  For :~U

{ } ),'(
24

57~
44 kraGUA И= (6.66a)

{ } ),'(
24
1~

42,4 kraGUA И−= (6.66b)

{ } ),'(
2880

57~
44,4 kraGUA И−= (6.66c)

{ } ),'(
20

57~
66 kraUA GИ−= (6.66d)

{ } ),'(
240
1~

62,6 kraUA GИ= (6.66e)

{ } ),'(
7200

5~
64,6 kraUA GИ−= (6.66f)

{ } ),'(
86400

1~
66,6 kraUA GИ= (6.66g)
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  For :~V

{ } ),'(
18
1~

42,4 kraGVB И= (6.67a)

{ } ),'(
360

5~
44,4 kraGVB И= (6.67b)

{ } ),'(
48
1~

62,6 kraVB GИ−= (6.67c)

{ } ),'(
3600

5~
64,6 kraVB GИ−= (6.67d)

{ } ),'(
86400

1~
66,6 kraVB GИ= (6.67e)

From these results it can be seen that W~  is corrupted by unwanted spherical harmonics of

order six; the first-order component signals are corrupted by spurious fifth-order spherical

harmonics; and the second-order signals contain both fourth-order and sixth-order unwanted

spherical harmonic components.

  In Chapter 5, it was noted that the B-format signals obtained from the first-order soundfield

microphone are contaminated by spurious second-order or third-order spherical harmonics.

The second-order soundfield microphone therefore represents a considerable improvement in

this respect. Since the higher order spherical harmonics have coefficients which depend on

higher order spherical Bessel functions, which in turn remain small up until greater values of

kr, so it may be expected that the maximum frequency to which effective coincidence is

maintained will exceed that given by equation (5.9). This advantage will, however, probably

be opposed to some extent by the fact that the array radius is likely to larger for a second-

order soundfield microphone.

6.4: Non-Coincidence Compensation Filtering

The author has not considered the design of non-coincidence compensation filters in detail;

the design of practical approximations to the theoretically ideal characteristics is a matter of

practical implementation rather than fundamental theory, and therefore outside the scope of

this thesis. Nevertheless, the following observations can be made.

  By substituting the coefficients given in table 6.1 into equation (6.51), we obtain the
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following results:
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  The factors of 3
2  and 3

1  in the expressions for ,1,2A  ,2,2A  ,1,2B  and 2,2B  are due to the

factors of 2
3  and 3 which appear in the definitions of the corresponding spherical harmonics

(see page 128); they therefore do not imply the need for compensatory scaling of the signals.

  The impulse responses corresponding to these frequency response functions may be found

by taking the inverse Fourier transforms. Let

c
r

=τ (6.69)
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then

τω=rk (6.70)

and employing the inverse Fourier transforms of the spherical Bessel functions developed in

Chapter 2, we obtain
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where
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tr (6.72)

  It may be noted that the frequency responses of the desired spherical harmonic components

of the zeroth-order and first-order signals have the same form as in the case of the first-order

soundfield microphone. Filters that have proved to give acceptable results with the first-order

soundfield microphone might well therefore be equally suitable for use with the second-order

microphone.

  In the case of the second-order signals, the required filtering is fundamentally different in

one respect. From equation (2.14), it can be seen that the frequency response function for the

second-order spherical harmonic components becomes zero for .0=kr  This is because we

are approximating second-order directional derivatives by taking the difference between the

outputs of first-order microphone capsules. An integration with respect to time is therefore

necessary, not to compensate for the spacing of the capsules, but as a fundamental part of the
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method being utilised to obtain the signals. The filtering will therefore serve a dual purpose

so far as these signals are concerned, since at higher frequencies compensation for the effects

of the capsule spacing will still be required.

  It must be noted that suitable filters cannot be designed on the basis of theory alone. During

the development of the first-order soundfield microphone, it was found that although filters

developed from theoretical analysis gave a substantial improvement over arrays without

filtering, to obtain optimum performance it was necessary to take into account experimental

information [7]. Certainly one expects that this will be the case with the second-order

soundfield microphone as well, since there will inevitably be departures from ideal behaviour

which are not represented in the theoretical treatment.

6.5: Additional B-Format Signal Processing

6.5.1: Rotation & Elevation

The rotation and elevation controls for the second-order soundfield microphone must clearly

have an identical effect on the zeroth-order and first-order signals as in the case of the first-

order microphone.

  By trigonometric manipulation it may be established that the rotation control modifies the

second-order component signals as follows:

12 RR = (6.73a)

112 )sin()cos( TSS θθ += (6.73b)

112 )cos()sin( TST θθ +−= (6.73c)

112 )2sin()2cos( VUU θθ += (6.73d)

112 )2cos()2sin( VUV θθ +−= (6.73e)

The effect of the elevation control on the second-order signals may similarly be established to

be:

( ) ( ) 18
3

14
3

14
1

2 )2cos(1)2sin()2cos(31 USRR φφφ −+−+= (6.74a)
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12
1

112 )2sin()2cos()2sin( USRS φφφ −+= (6.74b)

112 )sin()cos( VTT φφ −= (6.74c)

( ) ( ) 14
1

12
1

12
1

2 )2cos(3)2sin()2cos(1 USRU φφφ +++−= (6.74d)

112 )cos()sin( VTV φφ += (6.74e)

6.5.2: Side-Fire / End-Fire Switching & Inversion

The compensatory signal processing required to facilitate end-fire operation is:

12 WW = (6.75a)

12 ZX = (6.75b)

12 YY = (6.75c)

12 XZ −= (6.75d)

14
3

12
1

2 URR +−= (6.75e)

12 SS −= (6.75f)

12 VT = (6.75g)

12
1

12 URU += (6.75h)

12 TV = (6.75i)

As in the case of the first-order soundfield microphone, inverted operation requires only a

polarity reversal of some of the B-format signals:

12 YY −= (6.76a)

12 ZZ −= (6.76b)

12 SS −= (6.76c)

12 TT −= (6.76d)

12 VV −= (6.76e)

6.5.3: Dominance

The author has proved that it is not possible to extend the dominance transformation to work
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with the second-order B-format signal set.

  Suppose that the transformation can be extended to accommodate the second-order

component signals. The transformed signals must be linear combinations of the existing

signals; hence, there must exist coefficients ,'W  ,'X  ,'Y  'U  and ,'V  presumably functions

of λ, such that

)2sin(')2cos(')sin(')cos('')2cos( 11111111122 θθθθθ AVAUAYAXAWA ++++= (6.77)

Note that it is sufficient to consider only the pantophonic case, since the periphonic case

essentially reduces to this for .0=φ  Complications due to the non-zero response of R for

directions in the horizontal plane are avoided by using a notional signal which encodes only

amplitude; whether this notional signal is in actuality proportional to W or to a combination

of W and R is unimportant. The 21  scaling of W is also neglected for convenience.

  We know that

( ) ( )[ ] 11
1

12 )cos(1)cos(1
2
1 AA θλθλ −++= − (6.78a)

( )
( ) )cos(11

)cos(11)cos(
1

22
1

22

2 θλλ
θλλ

θ
−++
++−

= (6.78b)

( ) )cos(11
)sin(2

)sin(
1

22
1

2 θλλ
θλ

θ
−++

=  (6.78c)

and also that )2cos( 22 θA  can be found by using the identity

)(sin)(cos)2cos( 22 θθθ −= (6.79)

By taking various values of θ, it is possible to generate a set of simultaneous equations which

can then be solved for ,'W  ,'X  etc.

i) Let .01 =θ  Then

12 AA λ= (6.80a)
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02 =θ (6.80b)

and

'''
'''
'''
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λ
λ (6.81)

ii) Let .1801 °=θ  Then

1
1

2 AA −= λ (6.82a)

°= 1802θ (6.82b)
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iii) Let .901 °=θ  Then

[ ] 1
1

2 2
1 AA −+= λλ (6.84a)

1
1)cos( 2

2
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−

=
λ
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1
2)sin( 22 +

=
λ

λ
θ (6.84c)

and
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so
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iv) Let .901 °−=θ  Then
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v) Let .451 °=θ  Then
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so



    On the Theory of the Second-Order Soundfield Microphone Philip Cotterell

143

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) '2'''2

2
4222

2
1

'
2
'

2
''

2
4222

4
2

'
2
'

2
''

2
4222

4
2

11

212221

11

212221

111111

212221
1

VYXW

VYXW

AVAYAXAWA

+++=
−++

−++−+−

+++=
−++

−++−+−

+++=
−++

−++−+−

−−

−−−

−−

−−−

−−

−−−

λλλλ
λλλλλλ

λλλλ
λλλλλλ

λλλλ
λλλλλλ

(6.92)

Thus five simultaneous equations have been obtained, sufficient to determine the five

coefficients. By appropriate manipulations we obtain

( )1

2
1' −−= λλX (6.93a)

0'=Y (6.93b)
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However, if instead equation (6.92) is obtained by setting ,451 °−=θ  then we have instead
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The sign reversal on 'Y  is of no consequence, since we still obtain a value of zero for 'Y  as

before. However, the sign reversal on 'V  means that the solution is now
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We have thus obtained a contradiction, since equations (6.94) and (6.96) cannot

simultaneously be satisfied. Hence, it is not possible to find coefficients ,'W  ,'X  etc.,

independent of θ, such that equation (6.77) is satisfied, and so it is not possible to extend the

dominance transformation to the second-order case.


