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Appendix 1: Second-Order Derivatives & Spherical Harmonics - Additional Material

It will first be demonstrated that a second-order pressure gradient microphone can not have a

purely zeroth-order polar pattern. Such a polar pattern has Laplace series coefficients

Γ=0A (A1.1a)

02 =A (A1.1b)

01,2 =A (A1.1c)

02,2 =A (A1.1d)

01,2 =B (A1.1e)

02,2 =B (A1.1f)

It is not necessary to specify the values of the coefficients of the first-order spherical

harmonics, since, as demonstrated in Chapter 3, these will necessarily be zero. Using the

definitions established in Chapter 3, from equation (A1.1) we obtain

Γ=1C (A1.2a)

02 =C (A1.2b)

03 =C (A1.2c)

Γ=4C (A1.2d)

05 =C (A1.2e)

Γ=6C (A1.2f)

This requires that

Γ=== 212121 zzyyxx (A1.3)

and, since ,02 =C

02121 =+ xyyx (A1.4)
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Suppose that .0>Γ  Then from equation (A1.3), 1x  and 2x  are both non-zero and have the

same sign; similarly, both 1y  and 2y  are non-zero and have the same sign. But, from

equation (A1.4)

2

1

2

1

2121

y
y

x
x

xyyx

−=

−=
(A1.5)

The quotients exist, since 2x  and 2y  are both non-zero. As neither 1x  nor 1y  are zero,

equation (A1.5) can only be satisfied if either 1x  and 2x  or 1y  and 2y  have opposite signs,

but we have already established that this cannot be the case.

  Assume instead that .0<Γ  Now 1x  and 2x  must have opposing signs, as must 1y  and ,2y

but equation (A1.4), and hence equation (A1.5), must still hold; this is again a contradiction.

  Therefore, a second-order pressure gradient microphone can not have a zeroth-order polar

response pattern.

  It will now be demonstrated that only the derivatives specified in Chapter 3 (or those

trivially equivalent to them) can produce the second-order spherical harmonic polar patterns

that are required.

  We first consider the case

)(cos)2sin(),( 2 φθφθ =M (A1.6)

The Laplace series coefficients are

00 =A (A1.7a)

02 =A (A1.7b)

01,2 =A (A1.7c)

02,2 =A (A1.7d)

01,2 =B (A1.7e)

Γ=2,2B (A1.7f)

Hence
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01 =C (A1.8a)

Γ62 =C (A1.8b)

03 =C (A1.8c)

04 =C (A1.8d)

05 =C (A1.8e)

06 =C (A1.8f)

Since ,0641 === CCC  so

bothor  0or  0 0 2121 ==→= xxxx (A1.9a)

bothor  0or  0 0 2121 ==→= yyyy (A1.9b)

bothor  0or  0 0 2121 ==→= zzzz (A1.9c)

and since ,62 Γ=C  and ,053 == CC  so

Γ62121 =+ xyyx (A1.10a)

02121 =+ xzzx (A1.10b)

02121 =+ yzzy (A1.10c)

Also, since 1û  and 2û  are unit vectors, so of course

12
1

2
1

2
1 =++ zyx (A1.11a)

12
2

2
2

2
2 =++ zyx (A1.11b)

From (A1.9), either 1x  or 2x  or both are equal to zero; similarly either 1y  or 2y  or both are

equal to zero; but, since 0≠Γ  (because we require the harmonic to be present), so from

(A1.10a)

02121 ≠+ xyyx (A1.12)

Therefore, either 021 =yx  and ,021 ≠xy  or 021 ≠yx  and .021 =xy  Hence, either
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0,0,0,0 2121 =≠≠= yyxx

or

0,0,0,0 2121 ≠==≠ yyxx

In either case, equations (A1.10b) and (A1.10c) must still be satisfied. Now, if ,021 == yx

then

0212121 ==+ xzxzzx (A1.13a)

0212121 ==+ zyyzzy (A1.13b)

and, since 01 ≠y  and ,02 ≠x  so .021 == zz  If instead ,012 == yx  then

0212121 ==+ zxxzzx (A1.14a)

0212121 ==+ yzyzzy (A1.14b)

and, since 01 ≠x  and ,02 ≠y  again .021 == zz  Thus, in either case,

021 == zz (A1.15)

We now have

Γ62121 =+ xyyx (A1.16a)

12
1

2
1 =+ yx (A1.16b)

12
2

2
2 =+ yx (A1.16c)

with either 021 == yx  or .012 == yx  There exist a total of eight solutions:

[ ] [ ] 6
1

21 010ˆ001ˆ === ΓTT uu (A1.17a)

[ ] [ ] 6
1

21 010ˆ001ˆ −=−== ΓTT uu (A1.17b)
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[ ] [ ] 6
1

21 010ˆ001ˆ =−=−= ΓTT uu (A1.17c)

[ ] [ ] 6
1

21 010ˆ001ˆ −==−= ΓTT uu (A1.17d)

[ ] [ ] 6
1

21 001ˆ010ˆ === ΓTT uu (A1.17e)

[ ] [ ] 6
1

21 001ˆ010ˆ −=−== ΓTT uu (A1.17f)

[ ] [ ] 6
1

21 001ˆ010ˆ =−=−= ΓTT uu (A1.17g)

[ ] [ ] 6
1

21 001ˆ010ˆ −==−= ΓTT uu (A1.17h)

We now consider the case where

)(cos)2cos(),( 2 φθφθ =M (A1.18)

and the Laplace series coefficients are

00 =A (A1.19a)

02 =A (A1.19b)

01,2 =A (A1.19c)

Γ=2,2A (A1.19d)

01,2 =B (A1.19e)

02,2 =B (A1.19f)

so that

Γ31 =C (A1.20a)

02 =C (A1.20b)

03 =C (A1.20c)

Γ34 −=C (A1.20d)

05 =C (A1.20e)

06 =C (A1.20f)

Now ,0≠Γ  because we require the harmonic to be present. From equations (A1.20a) and

(A1.20d),
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Γ321 =xx (A1.21a)

Γ321 −=yy (A1.21b)

and none of ,1x  ,2x  ,1y  2y  can be zero.

  Since ,06 =C  so

bothor  0or  00 2121 ==→= zzzz (A1.22)

Further, since ,0532 === CCC  so

02121 =+ xzzx (A1.23a)

02121 =+ yzzy (A1.23b)

02121 =+ xyyx (A1.23c)

Consider equation (A1.23a). We know that either 1z  or ,2z  or both, are equal to zero. If

01 =z  then 021 =zx  and, since ,01 ≠x  .02 =z  Similarly, if 02 =z  then 021 =xz  and since

02 ≠x  so .01 =z  Hence

021 == zz (A1.24)

and equations (A1.23a) and (A1.23b) reduce to .00 =  Now since 1û  and 2û  are unit vectors,

12
1

2
1 =+ yx (A1.25a)

12
2

2
2 =+ yx (A1.25b)

which may be rearranged to give

2
1

2
1 1 yx −= (A1.26a)

2
2

2
2 1 yx −= (A1.26b)

or alternatively
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2
1

2
1 1 xy −= (A1.27a)

2
2

2
2 1 xy −= (A1.27b)

Rearranging equation (A1.23c), we obtain

2121 xyyx −= (A1.28)

and squaring both sides gives

2
2

2
1

2
2

2
1 xyyx = (A1.29)

Substituting in from equations (A1.27a) and (A1.27b) gives

( ) ( )

2
2

2
1

2
2

2
1

2
2

2
2

2
1

2
1

2
2

2
1

2
2

2
1 11

xx

xxxxxx

xxxx

=

−=−

−=−

(A1.30)

from which it follows that

21 xx = (A1.31)

Similarly, we can instead obtain

( ) ( )

2
1

2
2

2
2

2
1

2
1

2
2

2
1

2
2

2
2

2
1

2
2

2
1 11

yy

yyyyyy

yyyy

=

−=−

−=−

(A1.32)

from which it follows that

21 yy = (A1.33)



    On the Theory of the Second-Order Soundfield Microphone Philip Cotterell

158

Now from equations (A1.21a) and (A1.31)

Γ3

2
1

2121

=

=

=

x

xxxx

(A1.34)

and so

Γ32
1 =x (A1.35)

Similarly,

Γ32
1 =y (A1.36)

Therefore

2121 yyxx === (A1.37)

Now from equation (A1.25a),

12
1

2
1 =+ yx (A1.38)

and, since ,11 yx =  so

2
1

2
1
12

1

2
1

2
1

=

=

=

x

x

x

(A1.39)

and therefore, from equation (A1.37),
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2
1

2121 ==== yyxx (A1.40)

and

6
1

2
13

1

=

= xΓ
(A1.41)

so that

6
1±=Γ (A1.42)

Now, if ,6
1=Γ  then 1x  and 2x  have the same sign, while 1y  and 2y  have opposite signs; if

,6
1−=Γ  then 1x  and 2x  have opposite signs, while 1y  and 2y  have the same sign. We

obtain again a total of eight solutions:

6
1

21 0
2

1
2

1ˆ0
2

1
2
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






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
= Γ
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uu (A1.43b)
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uu (A1.43c)
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
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6
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uu (A1.43g)

6
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For the cases )2sin()cos(),( φθφθ =M  and ),2sin()sin(),( φθφθ =M  the method is exactly

parallel to that described for ).(cos)2sin(),( 2 φθφθ =M

  For ),2sin()cos(),( φθφθ =M  we obtain the results

[ ] [ ] 3
1

21 001ˆ100ˆ === ΓTT uu (A1.44a)

[ ] [ ] 3
1

21 001ˆ100ˆ −=−== ΓTT uu (A1.44b)

[ ] [ ] 3
1

21 001ˆ100ˆ −==−= ΓTT uu (A1.44c)

[ ] [ ] 3
1

21 001ˆ100ˆ =−=−= ΓTT uu (A1.44d)

[ ] [ ] 3
1

21 100ˆ001ˆ === ΓTT uu (A1.44e)

[ ] [ ] 3
1

21 100ˆ001ˆ −=−== ΓTT uu (A1.44f)

[ ] [ ] 3
1

21 100ˆ001ˆ −==−= ΓTT uu (A1.44g)

[ ] [ ] 3
1

21 100ˆ001ˆ =−=−= ΓTT uu (A1.44h)

while for ),2sin()sin(),( φθφθ =M  the solutions are

[ ] [ ] 3
1

21 100ˆ010ˆ −=−== ΓTT uu (A1.45a)

[ ] [ ] 3
1

21 100ˆ010ˆ −==−= ΓTT uu (A1.45b)

[ ] [ ] 3
1

21 100ˆ010ˆ === ΓTT uu (A1.45c)

[ ] [ ] 3
1

21 100ˆ010ˆ =−=−= ΓTT uu (A1.45d)

[ ] [ ] 3
1

21 010ˆ100ˆ −=−== ΓTT uu (A1.45e)

[ ] [ ] 3
1

21 010ˆ100ˆ −==−= ΓTT uu (A1.45f)

[ ] [ ] 3
1

21 010ˆ100ˆ === ΓTT uu (A1.45g)

[ ] [ ] 3
1

21 010ˆ100ˆ =−=−= ΓTT uu (A1.45h)

The final second-order spherical harmonic polar pattern is

( )1)(sin3
2
1),( 2 −= φφθM (A1.46)

for which the Laplace series coefficients are
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00 =A (A1.47a)

Γ=2A (A1.47b)

01,2 =A (A1.47c)

02,2 =A (A1.47d)

01,2 =B (A1.47e)

02,2 =B (A1.47f)

so that

Γ2
1

1 −=C (A1.48a)

02 =C (A1.48b)

03 =C (A1.48c)

Γ2
1

4 −=C (A1.48d)

05 =C (A1.48e)

Γ=6C (A1.48f)

Now ,0≠Γ  because we require the harmonic to be present; hence, none of ,1x  ,2x  ,1y  ,2y

,1z  2z  can be equal to zero.

  Since ,0532 === CCC  so

02121 =+ xyyx (A1.49a)

02121 =+ xzzx (A1.49b)

02121 =+ yzzy (A1.49c)

and, rearranging equation (A1.49a),

2121 xyyx −= (A1.50)

Since 01 ≠x  and ,01 ≠y  from equations (A1.48a) and (A1.48d) we may write
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1
2 2x

x Γ
−= (A1.51a)

1
2 2y

y Γ
−= (A1.51b)

Substituting these in equation (A1.50) gives

2
1

2
1

1

1

1

1

1

1

1

1

1
1

1
1

22

22

yx

x
y

y
x

x
y

y
x

x
y

y
x

=−

=−

=−









−−=








−

ΓΓ

ΓΓ

(A1.52)

which has no real solutions except for ,011 == yx  which has already been eliminated as a

possible solution.

  The desired polar response cannot therefore be obtained as a derivative in this way. Instead,

we seek a derivative which will generate the required polar response plus an omnidirectional

component (which can be removed if the pressure is available as a separate signal). We thus

set

Γ=0A (A1.53a)

Γ=2A (A1.53b)

01,2 =A (A1.53c)

02,2 =A (A1.53d)

01,2 =B (A1.53e)

02,2 =B (A1.53f)

so that

ΓΓ 2
1

1 −=C (A1.54a)

02 =C (A1.54b)
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03 =C (A1.54c)

ΓΓ 2
1

4 −=C (A1.54d)

05 =C (A1.54e)

ΓΓ +=6C (A1.54f)

Since ΓΓ 2
1

41 −== CC  and ,6 ΓΓ +=C  so

ΓΓ 2
1

21 −=xx (A1.55a)

ΓΓ 2
1

21 −=yy (A1.55b)

ΓΓ +=21zz (A1.55c)

Neither Γ  nor Γ  is equal to zero, since both harmonics must be present.

  Since ,0532 === CCC

02121 =+ xyyx (A1.56a)

02121 =+ xzzx (A1.56b)

02121 =+ yzzy (A1.56c)

From equations (A1.55a) and (A1.55b),

2121 yyxx = (A1.57)

and from equation (A1.56a)

2121 xyyx −= (A1.58)

Hence
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2

2

2

2

2
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2
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2
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y
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x
y

y
xy

x
yy

y
xyx

x
yyx

−=→−=→














−=

=

(A1.59a)
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

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
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
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(A1.59b)
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

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




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(A1.59c)

1

1

1

1

1

21

1

21
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1
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x
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











−=

=

(A1.59d)

Since ,1x  ,2x  1y  and 2y  must all be real, these results all lead to contradictions; for any real

number x, x and x1  have the same sign. We must therefore make at least one element zero;

the quotients will then not exist and the contradiction will not arise. Since at least one of ,1x

,2x  ,1y  and 2y  must be zero, so at least one of the products 21xx  and 21 yy  must be zero;

from equation (A1.57) we therefore have

bothor  0or  00 2121 ==→= xxxx (A1.60a)

bothor  0or  00 2121 ==→= yyyy (A1.60b)

  Furthermore, from equations (A1.55a) and (A1.60a),
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ΓΓ

ΓΓ

2
02

1

=

=− (A1.61)

Substituting this into equation (A1.55c) gives

Γ321 =zz (A1.62)

Since neither Γ nor Γ  is zero, neither 1z  nor 2z  can be equal to zero. Now, since neither 1z

nor 2z  can be zero, and at least one of 1x  and 2x  and at least one of 1y  and 2y  must be equal

to zero, equations (A1.56b) and (A1.56c) can only be satisfied if

02121 ==== yyxx (A1.63)

This leaves

11 1
2

1 ±=→= zz (A1.64a)

11 2
2

2 ±=→= zz (A1.64b)

and

3
1

21

1
3

±=

±=
=

Γ

Γ zz
(A1.65)

for which there exist four solutions, rather than eight as in the previous cases:

[ ] [ ] 3
1

3
2

21 100ˆ100ˆ ==== ΓΓTT uu (A1.66a)

[ ] [ ] 3
1

3
2

21 100ˆ100ˆ −=−=−== ΓΓTT uu (A1.66b)

[ ] [ ] 3
1

3
2

21 100ˆ100ˆ −=−==−= ΓΓTT uu (A1.66c)

[ ] [ ] 3
1

3
2

21 100ˆ100ˆ ==−=−= ΓΓTT uu (A1.66d)
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Appendix 2: Ambisonic Signal Formats

A number of different signal sets are or may be used at one stage or another of an ambisonic

system. For convenient reference, these various signal sets are briefly described in this

appendix.

A2.1: A-, B-, C- & D-Format

As discussed in the main body of this thesis, the output signals of the microphone capsules

making up a soundfield microphone are referred to as A-format signals. This signal set is not

available to the “outside world”; it is utilised only within the soundfield microphone itself.

  The B-format signal set, which is the primary signal format for ambisonic use, is also

described in detail in the main text.

  Ideally, the B-format signals would be communicated directly to the listener. Unfortunately,

this has not always been possible - in particular, the need to distribute recordings via two-

channel media, retaining compatibility with existing stereo and mono equipment, led to the

need for alternative signal formats to be employed. The signal set which is conveyed to the

listener via a recording or transmission medium, when it differs from B-format, is termed C-

format. The “C” is sometimes said to stand for “consumer”; the term “consumer-format”

does make sense in this context, although one suspects that this nomenclature post-dates the

C-format designation. The C-format signal sets which were proposed as part of the initial

development of ambisonics are together known as the UHJ hierarchy and are described in the

next section.

  The loudspeaker feed signals produced by an ambisonic decoder are sometimes referred to

as D-format signals [8].

A2.2: The UHJ Hierarchy

The UHJ set, or hierarchy, of signal formats was designed to allow the use of two-channel

recording and transmission media, while providing mono and stereo compatibility and

allowing an upgrade to “full” ambisonic reproduction where circumstances and facilities
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permitted [21] [22] [48].

  The UHJ hierarchy consists of four signal formats: BHJ, SHJ, THJ and PHJ. Since only

BHJ encoded material was ever released commercially, the terms UHJ and BHJ have tended

to be used synonymously, and in fact UHJ is generally thought to mean BHJ.

  BHJ consists of two signals, derived from the W, X and Y signals of B-format and optimised

for mono and two-channel stereo compatibility. The two signals are denoted Σ and ∆; Σ is the

monophonic signal, while for two-speaker stereo reproduction left and right speaker feeds L

and R are obtained as

)(2
1 ∆Σ +=L (A2.1a)

)(2
1 ∆Σ −=R (A2.1b)

A suitable decoder can extract approximations to the original signals W, X and Y and thus

produce speaker feed signals for pantophonic surround sound reproduction, although there is

of course some information loss due to the matrixing of three signals into two.

  A third signal T may be added to the BHJ set. A suitable decoder can then use these three

signals to exactly reconstruct the original pantophonic B-format signals; however, the stereo

and mono compatibility of the BHJ format is left unchanged. If T is of full bandwidth, then

this signal set is known as THJ; a reduced bandwidth T signal may also be employed, in

which case we obtain the SHJ signal set. Hence SHJ provides some improvement in

directional effect compared to BHJ, while THJ provides full B-format and thus a further

improvement. Since neither SHJ nor THJ has ever been utilised commercially, it is unlikely

that any confusion will result from the use of T to designate both this signal and part of the

second-order B-format set.

  A fourth signal, Q, may be added to the THJ set, giving PHJ. Q is obtained directly from the

B-format Z signal and thus carries height information; hence, PHJ provides for full first-order

periphonic ambisonic reproduction. Alternatively, the Q signal may be used to create a

loudspeaker emphasis effect - something generally contrary to the goals of ambisonic

reproduction, but nonetheless desired by some content producers.

  A detailed description of the UHJ encoding specification may be found in [48].
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A2.3: Enhanced B-Format; BE-, BF- & BEF-Format

Enhanced B-format signal sets have been proposed in connection with B-format decoders

optimised specifically for use with HDTV, or more generally for use in support of visual

media. The primary motivation is to produce a frontal sound stage which is more stable with

respect to movement by the listener, and specifically to “lock” centre-front acoustic images in

place with respect to a screen. Thus, the motivation is substantially the same as for the use of

the centre channel in cinema-oriented surround sound formats.

  Two extra signals are defined, denoted E and F. These signals have directional response

patterns:
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where Sθ  is the half-stage angular width for the frontal sound stage, typically in the range

60° to 70°, Bθ  is similarly the half-stage width for the rear sound stage, gK  has a value of

25.025.3 ± , eK  is a parameter with a value between 0 and 1 controlling the impact of the E

signal, and similarly fK  and bK  control the effect of the F signal.

  Adding the E signal to the B-format set produces BE-format; similarly inclusion of F results

in BF-format, while including both E and F gives the BEF-format signal set. These signals

sets are described in [48] [52].

A2.4: G-Format & “G+2”

As mentioned in Chapter 1, it has recently been suggested that ambisonic recordings could be

distributed in a pre-decoded form, targeted at the standard 5-channel surround sound speaker

layout [22]. These pre-decoded distribution signals are referred to as G-format signals. G-

format has the significant advantage that the listener does not need to be equipped with an
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ambisonic decoder, although other advantages of ambisonics, such as the inclusion of height

information and the ability to decode for the local loudspeaker layout, are lost. The

conversion from B-format to G-format is however reversible, so that the suitably equipped

listener may recover the B-format signals and use them to drive an ambisonic decoder. It has

been suggested that as well as carrying G-format, a DVD might also carry BHJ encoded

ambisonic material as a stereo soundtrack; the G-format and BHJ signals may be obtained

from the same B-format mix [22]. This combination has been called “G+2” format.


